Sains Malaysiana 53(8)(2024): 1937-1952

http://doi.org/10.17576/jsm-2024-5308-17

 

Microwave vs. Reflux Synthesis of Bis-Thiourea Derivative: Yield Optimization, Crystallographic Understanding and Optical Sensing Potential

(Sintesis Gelombang Mikro lawan Refluks Terbitan Bis-Tiourea: Pengoptimuman Hasil, Pemahaman Kristalografi dan Potensi Penderiaan Optik)

 

HASANAIN SALAH NAEEM1,2, ISRAA JABER2, SUHAILA SAPARI1, FAZIRA ILYANA ABDUL RAZAK4, BILAL MAJID RUDAINI5, NURUL HIDAYAH ABD RAZAK1, ASMAA. SOHEIL. NAJM3 & SITI AISHAH HASBULLAH1,*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Faculty of Pharmacy, University of Al Muthanna, Samawah 66001, Iraq

3Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

5Department of Pharmacy, Al-Maarif University College, Al Anbar,31001, Iraq

 

Received: 4 December 2023/Accepted: 13 June 2024

 

Abstract

A new bis-thiourea (BT) derivative was successfully synthesized using both conventional reflux and microwave irradiation methods. The microwave irradiation reaction yielded a greater percentage yield of 73%, while the reflux heating yielded only 44%. The microwave irradiation procedure takes a minimum of 10 min to complete, in contrast to the reflux heating method, which takes 24 h. The compound was characterised using a variety of spectroscopic techniques, including UV-Vis, FTIR, nuclear magnetic resonance (1H-NMR and 13C-NMR), and single crystal X-ray crystallography (XRC). It shows that BT has a high ability to form hydrogen bonds of both intermolecular and intramolecular types, as demonstrated by X-ray crystallography and DFT calculations. In addition, this research provides insights into the possible uses of BT in coordination chemistry involving metal ions, such as a copper ions. Through the use of density-functional theory (DFT) and UV-Vis investigations, it is envisaged that the BT compound has a strong tendency to form stable copper ion complexes. This is supported by the optimal energy value E(UB3LYP) observed for the Cu(II) complex.

 

Keywords: Bis-thiourea derivative; DFT optimization; microwave reaction; single crystal

 

Abstrak

Dalam penyelidikan ini, sebatian bis-tiourea, BT telah berjaya disintesis menggunakan kaedah konvensional (refluks) dan kaedah penyinaran mikrogelombang. Kaedah penyinaran mikrogelombang memberikan peratusan hasil yang tinggi iaitu 73%, manakala kaedah refluks memberikan hanya 44%. Kaedah penyinaran mikrogelombang memerlukan masa hanya 10 minit untuk selesai berbanding dengan kaedah refluks memerlukan masa sehingga 24 jam. Pencirian struktur sebatian dijalankan menggunakan pelbagai kaedah spektroskopi iaitu spektroskopi ultra lembayung - boleh nampak (ULBN), spektroskopi Fourier transformasi inframerah (FTIR), spektroskopi resonans magnetik nukleus 1H dan 13C (1H-RMN dan 13C-RMN) dan kristalografi sinar-X hablur tunggal (X-Ray). Berdasarkan daripada kajian X-ray dan kajian teori fungsi ketumpatan (DFT), sebatian BT mempunyai keupayaan yang tinggi membentuk ikatan hidrogen secara intramolekul dan intermolekul. Lebih-lebih lagi, kajian ini memberikan penggunaan sebatian BT dalam kimia pengikatan melibatkan ion logam seperti ion kuprum. Melalui kajian fungsi ketumpatan (DFT) dan pemerhatian ULBN, sebatian BT berupaya membentuk kompleks ion kuprum yang stabil. Ini disokong oleh oleh pemerhatian ke atas kompleks Cu(II) melalui nilai tenaga optimum E(UB3LYP).

 

Kata kunci: Hablur tunggal; pengoptimuman DFT; terbitan bis-tiourea; tindak balas sinaran mikrogelombang

 

References

Abosadiya, H.M., Anouar, E.H., Hasbullah, S.A. & Yamin, B.M. 2015. Synthesis, X-ray, NMR, FT-IR, UV/vis, DFT and TD-DFT studies of N-(4-chlorobutanoyl)-N′-(2-, 3- and 4-methylphenyl)thiourea derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 144: 115-124.

Adam, F., Fatihah, N.N. & Ameram, N. 2016. The synthesis and characterisation of 2-methyl-N- Its preparation with antibacterial study. Journal of Physical Science 27(2): 83-101.

Ajlouni, A.M., Taha, Z.A., Al-Hassan, K.A. & Abu Anzeh, A.M. 2012. Synthesis, characterization, luminescence properties and antioxidant activity of Ln(III) complexes with a new aryl amide bridging ligand. Journal of Luminescence 132(6): 1357-1363.

Alenzi, M.K., Azam, M., Al-Resayes, S.I., Kansız, S., Çamaş, A.S., Agurokpon, D.C., Louis, H., Kumar, V., Dege, N. & Alam, M. 2024. Experimental and theoretical investigation into the design of nickel (II), copper (II), and zinc (II) complexes substituted with pyrazole ligand. Polyhedron 259: 117073.

Al-Harbi, R.A.K., El-Sharief, M.A.M.S. & Abbas, S.Y. 2019. Synthesis and anticancer activity of bis-benzo[d][1,3]dioxol-5-yl thiourea derivatives with molecular docking study. Bioorganic Chemistry 90: 103088.

Altaf, A.A., Shahzad, A., Gul, Z., Khan, S.A., Badshah, A., Tahir, M.N., Zafar, Z.I. & Khan, E. 2015. Synthesis, crystal structure, and DFT calculations of 1,3-diisobutyl thiourea. Journal of Chemistry 2015: 913435.

Antony Muthu Prabhu, A., Siva, S., Sankaranarayanan, R.K. & Rajendiran, N. 2010. Intramolecular proton transfer effects on 2,6-diaminopyridine. Journal of Fluorescence 20: 43-54.

Arshad, N., Shakeel, M., Javed, A., Perveen, F., Saeed, A., Ahmed, A., Ismail, H., Channar, P.A. & Naseer, F. 2024. Exploration of newly synthesized amantadine-thiourea conjugates for their DNA binding, anti-elastase, and anti-glioma potentials. International Journal of Biological Macromolecules 263(Part 1): 130231.

Arshad, N., Rafiq, M., Ujan, R., Saeed, A., Farooqi, S.I., Perveen, F., Channar, P.A., Ashraf, S., Abbas, Q., Ahmed, A., Hokelek, T., Kaur, M. & Jasinski, J.P. 2020. Synthesis, X-ray crystal structure elucidation and Hirshfeld surface analysis of N-((4-(1H-benzo[d] imidazole-2-yl)phenyl)carbamothioyl)benzamide: Investigations for elastase inhibition, antioxidant and DNA binding potentials for biological applications. RSC Advances 10: 20837-20851.

Baby, R., Saifullah, B. & Hussein, M.Z. 2019. Palm kernel shell as an effective adsorbent for the treatment of heavy metal contaminated water. Scientific Reports 9: 18955.

Bai, X., Li, Y. & Ye, Z. 2016. A colorimetric sensor based on thiourea–polyvinyl alcohol microspheres for the selective recognition of Hg2+ and Cu2+. New Journal of Chemistry 40(10): 8815-8822.

Bruckmann, A., Krebs, A. & Bolm, C. 2008. Organocatalytic reactions: Effects of ball milling, microwave and ultrasound irradiation. Green Chemistry 10(11): 1131-1141.

Caprio, V. 2008. Pyridines and their benzo derivatives: Reactivity of substituents. Comprehensive Heterocyclic Chemistry III 5: 101-169.

Chacko Yohannan Panickera, H.T.V., Varkey, T., Georged, A. & Kandathil, P. 2010. FT‐IR, FT‐Raman and ab‐initio studies of 1,3‐diphenyl thiourea. European Journal of Chemistry 1(3): 173-178.

Charisiadis, P., Kontogianni, V.G., Tsiafoulis, C.G., Tzakos, A.G., Siskos, M. & Gerothanassis, I.P. 2014. 1H-NMR as a structural and analytical tool of intra- and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 19: 13643-13682.

Delgado, G.E., Fonseca, J.L., Mora, A.J., Bruno-Colmenárez, J., Chacón, C., Marroquin, G., Cisterna, J. & Brito, I. 2024. Crystal structure, hydrogen bond patterns, Hirshfeld surface analysis, and topological studies (NCI) of 1, 5, 5-trimethyl-imidazolidine-2, 4-dione; an organic compound with high symmetry crystallizing in the tetragonal space group I4/m. Journal of Molecular Structure 1299: 137205.

Dhanishta, P., Siva, P.S., Mishra, S.K. & Suryaprakash, N. 2018. Intramolecular hydrogen bond directed stable conformations of benzoyl phenyl oxalamides: Unambiguous evidence from extensive NMR studies and DFT-based computations. RSC Advances 8(20): 11230-11240.

Dudley, G.B. & Stiegman, A.E. 2015. On the existence of and mechanism for microwave-specific reaction rate enhancement. Chemical Science 6: 2144-2152.

Effendhy, N.D., Roto, R. & Siswanta, D. 2024. Advancing fluoride (F–) detection: Exploring the potential of digital color analysis with a novel thiourea receptor. Microchemical Journal 197: 109819.

Fakhar, I., Yamin, B.M. & Hasbullah, S.A. 2017. A comparative study of the metal binding behavior of alanine based bis‑thiourea isomers. Chemistry Central Journal 11: 76.

Fakhar, I., Yamin, B.M. & Hasbullah, S.A. 2016. Synthesis and characterization of bis-thiourea having amino acid derivatives. AIP Conference Proceedings 1784: 030012.

Gemili, M., Nural, Y., Keleş, E., Aydıner, B., Seferoğlu, N., Sahin, E., Sarı, H. & Seferoğlu, Z. 2018. Novel 1,4-naphthoquinone N-aroylthioureas: Syntheses, crystal structure, anion recognition properties, DFT studies and determination of acid dissociation constants. Journal of Molecular Liquids 269: 920-932.

Han, W.S., Lee, H.Y., Jung, S.H. & Lee, S.J. 2009. Silica-based chromogenic and fluorogenic hybrid chemosensor materials. Chemical Society Reviews 38(7): 1904-1915.

Hosseinjani-Pirdehi, H., Mahmoodi, N.O., Pasandideh, M. & Taheri, A. 2020. Novel synthesized azo-benzylidene-thiourea as dual naked-eye chemosensor for selective detection of Hg2+ and CN¯ ions. Journal of Photochemistry & Photobiology A: Chemistry 391: 112365.

Imran Fakhar, Bohari Muhammad Yamin, Sahilah Abdul Mutalib & Siti Aishah Hasbullah. 2018. Synthesis and binding behaviour of new isomers of bis-thiourea. Sains Malaysiana 47(6): 1199-1208.

Jambi, S.M., Chen, J., Zhang, W., Fu, S., Zhou, Y., Domena, J.B. & Leblanc, R.M. 2023. Synthesis and characterization of carbon dots derived from compounds containing thioureas and thiazole rings. Colloids and Surfaces A: Physicochemical and Engineering Aspects 669: 131522.

Jin, G., Hong, I., Joo, E., Kim, H. & Kim, C. 2014. A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70(17): 2822-2828. http://dx.doi.org/10.1016/j.tet.2014.02.055

Jorgetto, A.D.O., Pereira, S.P., Innocenti, R., Saeki, M.J., Antonio, M., Martines, U., Pedrosa, V.D.A. & Castro, G.R. 2015. Application of mesoporous SBA-15 silica functionalized with 4-amino-2-mercaptopyrimidine for the adsorption of Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) from water. Acta Chimica Slovenica 62(1): 111-121.

Kamalulazmy, N., Mutalib, S.A., Nasir, F.I. & Hassan, N.I. 2016. Characterization and antimicrobial studies of five substituted bis-thioureas. Malaysian Journal of Analytical Sciences 20(1): 85-90.

Klygach, D.S., Vakhitov, M.G., Suvorov, P.V., Zherebtsov, D.A. & Trukhanov, S.V. 2019. Magnetic and microwave properties of carbonyl iron in the high frequency range. Journal of Magnetism and Magnetic Materials 490: 165493.

Kole, G.K. & Kumar, M. 2018. Patterns of hydrogen bonding involving thiourea in the series of thioureatrans-1,2-bispyridyl ethylene cocrystals–A comparative study. Journal of Molecular Structure 1163: 18-21.

Lin, Q., Chen, P., Liu, J., Fu, Y., Zhang, Y. & Wei, T. 2013. Colorimetric chemosensor and test kit for detection copper (II) cations in aqueous solution with specific selectivity and high sensitivity. Dyes and Pigments 98(1): 100-105. http://dx.doi.org/10.1016/j.dyepig.2013.01.024

Liu, Y., Yang, L., Li, L., Liang, X., Li, S. & Fu, Y. 2020. A dual thiourea-appended perylenebisimide “turn-on” fluorescent chemosensor with high selectivity and sensitivity for Hg2+ in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 241: 118678.

Lu, A., Wang, Z., Zhou, Z., Chen, J. & Wang, Q. 2015. Application of “hydrogen bonding interaction” in new drug development : Design, synthesis, antiviral activity and SARs of thiourea derivatives. Journal of Agricultural and Food Chemistry 63(5): 1378-1384.

Luo, J., Hunyar, C., Feher, L., Link, G., Thumm, M. & Pozzo, P. 2004. Theory and experiments of electromagnetic loss mechanism for microwave heating of powdered metals. Applied Physics Letters 84(25): 5076-5078.

Maddani, M.R. & Prabhu, K.R. 2010. A concise synthesis of substituted thiourea derivatives in aqueous medium. The Journal of Organic Chemistry 75(7): 2327-2332.

Maity, D. & Govindaraju, T. 2011. Highly selective visible and near-IR sensing of Cu2+ based on thiourea–Salicylaldehyde coordination in aqueous media. Chemistry - A European Journal 17(5): 1410-1414.

Mohd, W., Wan, K., Zin, M., Kadir, M.A. & Yamin, B.M. 2011. Structural and spectroscopic studies of novel methylbenzoyl thiourea derivatives. Malaysian Journal of Analytical Sciences 15(1): 70-80.

Ngah, F.A.A., Zakariah, E.I., Hassan, N.I., Yamin, B., Sapari, S. & Hasbullah, S.A. 2017. Synthesis of thiourea derivatives and binding behavior towards the mercury ion. Malaysian Journal of Analytical Sciences 21(6): 1226-1234.

Nurul Hidayah Abdul Razak, Ling Ling Tan, Siti Aishah Hasbullah & Lee Yook Heng. 2020. Reflectance chemosensor based on bis-thiourea derivative as ionophore for copper(II) ion detection. Microchemical Journal 153: 104460.

Perrone, D., Monteiro, M. & Castelo-Branco, V.N. 2015. The chemistry of imidazole dipeptides. In Imidazole Dipeptides: Chemistry, Analysis, Function and Effects, edited by Preedy, V.R. Cambridge: Royal Society of Chemistry. pp. 43-60.

Pingaew, R., Sinthupoom, N., Mandi, P., Prachayasittikul, V., Cherdtrakulkiat, R., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. 2017. Synthesis, biological evaluation and in silico study of bis-thiourea derivatives as anticancer, antimalarial and antimicrobial agents. Medicinal Chemistry Research 26(12): 3136-3148.

Reisman, S.E., Doyle, A.G. & Jacobsen, E.N. 2008. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. Journal of the American Chemical Society 130(23): 7198-7199.

Robinson, J., Kingman, S., Irvine, D., Licence, P., Smith, A., Dimitrakis, G. & Kappe, C.O. 2010. Understanding microwave heating effects in single mode type cavities-theory and experiment. Physical Chemistry Chemical Physics 12: 4750-4758.

Saad, F.A. 2014. Synthesis, spectral, electrochemical and X-ray single crystal studies on Ni(II) and Co(II) complexes derived from 1-benzoyl-3-(4-methylpyridin-2-yl) thiourea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128: 386-392.

Sapari, S., Emma Izzati Zakariah, Razak, N.H.A., Ramzan, I., Numin, M.S., Lee Yook Heng & Hasbullah, S.A. 2021. A comparative study of microwave-assisted and conventional heating methods of the synthesis of 1-(naphthalene-1-yl)-3-(o, m, p-tolyl)thioureas, dft analysis, antibacterial evaluation and drug-likeness assessment. Sains Malaysiana 50(3): 743-751.

Schroeder, D.C. 1955. Thioureas. Chemical Reviews 55(1): 181-228.

Tang, J., Radosz, M. & Shen, Y. 2008. Poly (ionic liquid) s as optically transparent microwave-absorbing materials. Macromolecules 41: 493-496.

Teixeira, A.M.R., Santos, H.S., Albuquerque, M.R.J.R., Bandeira, P.N., Rodrigues, A.S., Silva, C.B., Gusmão, G.O.M., Freire, P.T.C. & Bento, R.R.F. 2012. Vibrational spectroscopy of xanthoxyline crystals and DFT calculations. Brazilian Journal of Physics 42(3-4): 180-185.

Tungsombatvisit, N., Inprasit, T., Rohmawati, D. & Pisitsak, P. 2019. Rhodamine derivative- based cellulose acetate electrospun colorimetric sensor for Cu2+ sensing in water: Effects of alkaline treatment. Fibers and Polymers 20(3): 481-489.

Warren, W.H. 1928. Contemporary reception of Wohler’s discovery of the synthesis of urea. Journal of Chemical Education 5(12): 1539.

Wazzan, N.A. 2015. DFT calculations of thiosemicarbazide, arylisothiocynates, and 1-aryl-2,5-dithiohydrazodicarbonamides as corrosion inhibitors of copper in an aqueous chloride solution. Journal of Industrial and Engineering Chemistry 26: 291-308.

Wiberg, K.B., Wang, Y., Box, P.O. & Haven, N. 2011. A comparison of some properties of C=O and C=S bonds. Arkivoc 2011(5): 45-56.

Yang, Y., Weaver, M.N. & Merz Jr., K.M. 2009. Assessment of the “6-31+G** + LANL2DZ” Mixed basis set coupled with density functional theory methods and the effective core potential : Prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. Journal of Physical Chemistry A 113(36): 9843-9851.

 

*Corresponding author; email: aishah80@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next