Sains Malaysiana 53(8)(2024): 1937-1952
http://doi.org/10.17576/jsm-2024-5308-17
Microwave vs. Reflux
Synthesis of Bis-Thiourea Derivative: Yield
Optimization, Crystallographic Understanding and Optical Sensing Potential
(Sintesis Gelombang Mikro lawan Refluks Terbitan Bis-Tiourea: Pengoptimuman Hasil, Pemahaman Kristalografi dan Potensi Penderiaan Optik)
HASANAIN SALAH NAEEM1,2,
ISRAA JABER2, SUHAILA SAPARI1, FAZIRA ILYANA ABDUL RAZAK4,
BILAL MAJID RUDAINI5, NURUL HIDAYAH ABD RAZAK1, ASMAA.
SOHEIL. NAJM3 & SITI AISHAH HASBULLAH1,*
1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Faculty of Pharmacy, University of Al Muthanna, Samawah 66001, Iraq
3Department of Electrical, Electronics and System, FKAB, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
4Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor, Malaysia
5Department of Pharmacy, Al-Maarif University
College, Al Anbar,31001, Iraq
Received: 4 December 2023/Accepted: 13 June 2024
Abstract
A new bis-thiourea (BT) derivative was
successfully synthesized using both conventional reflux and microwave
irradiation methods. The microwave irradiation reaction yielded a greater
percentage yield of 73%, while the reflux heating yielded only 44%. The
microwave irradiation procedure takes a minimum of 10 min to complete, in
contrast to the reflux heating method, which takes 24 h. The compound was
characterised using a variety of spectroscopic techniques, including UV-Vis,
FTIR, nuclear magnetic resonance (1H-NMR and 13C-NMR),
and single crystal X-ray crystallography (XRC). It shows that BT has a high
ability to form hydrogen bonds of both intermolecular and intramolecular types,
as demonstrated by X-ray crystallography and DFT calculations. In addition,
this research provides insights into the possible uses of BT in coordination
chemistry involving metal ions, such as a copper ions.
Through the use of density-functional theory (DFT) and UV-Vis investigations,
it is envisaged that the BT compound has a strong tendency to form stable
copper ion complexes. This is supported by the optimal energy value E(UB3LYP)
observed for the Cu(II) complex.
Keywords: Bis-thiourea derivative;
DFT optimization; microwave reaction; single crystal
Abstrak
Dalam penyelidikan ini, sebatian bis-tiourea, BT telah berjaya disintesis menggunakan kaedah konvensional (refluks) dan kaedah penyinaran mikrogelombang. Kaedah penyinaran mikrogelombang memberikan peratusan hasil yang tinggi iaitu 73%, manakala kaedah refluks memberikan hanya 44%. Kaedah penyinaran mikrogelombang memerlukan masa hanya 10 minit untuk selesai berbanding dengan kaedah refluks memerlukan masa sehingga 24 jam. Pencirian struktur sebatian dijalankan menggunakan pelbagai kaedah spektroskopi iaitu spektroskopi ultra lembayung - boleh nampak (ULBN), spektroskopi Fourier transformasi inframerah (FTIR), spektroskopi resonans magnetik nukleus 1H dan 13C
(1H-RMN dan 13C-RMN) dan kristalografi sinar-X hablur tunggal (X-Ray). Berdasarkan daripada kajian X-ray dan kajian teori fungsi ketumpatan (DFT), sebatian BT mempunyai keupayaan yang tinggi membentuk ikatan hidrogen secara intramolekul dan intermolekul. Lebih-lebih lagi, kajian ini memberikan penggunaan sebatian BT dalam kimia pengikatan melibatkan ion logam seperti ion kuprum. Melalui kajian fungsi ketumpatan (DFT) dan pemerhatian ULBN, sebatian BT berupaya membentuk kompleks ion kuprum yang stabil. Ini disokong oleh oleh pemerhatian ke atas kompleks Cu(II) melalui nilai tenaga optimum E(UB3LYP).
Kata kunci: Hablur tunggal; pengoptimuman DFT; terbitan bis-tiourea; tindak balas sinaran mikrogelombang
References
Abosadiya,
H.M., Anouar, E.H., Hasbullah, S.A. & Yamin, B.M. 2015. Synthesis, X-ray,
NMR, FT-IR, UV/vis, DFT and TD-DFT studies of
N-(4-chlorobutanoyl)-N′-(2-, 3- and 4-methylphenyl)thiourea derivatives. Spectrochimica
Acta - Part A: Molecular and Biomolecular Spectroscopy 144: 115-124.
Adam, F., Fatihah, N.N. &
Ameram, N. 2016. The synthesis and characterisation of 2-methyl-N- Its
preparation with antibacterial study. Journal of Physical Science 27(2):
83-101.
Ajlouni, A.M., Taha, Z.A.,
Al-Hassan, K.A. & Abu Anzeh, A.M. 2012. Synthesis, characterization,
luminescence properties and antioxidant activity of Ln(III) complexes with a
new aryl amide bridging ligand. Journal of Luminescence 132(6):
1357-1363.
Alenzi, M.K., Azam, M.,
Al-Resayes, S.I., Kansız, S., Çamaş, A.S., Agurokpon, D.C., Louis,
H., Kumar, V., Dege, N. & Alam, M. 2024. Experimental and theoretical
investigation into the design of nickel (II), copper (II), and zinc (II)
complexes substituted with pyrazole ligand. Polyhedron 259: 117073.
Al-Harbi, R.A.K., El-Sharief,
M.A.M.S. & Abbas, S.Y. 2019. Synthesis and anticancer activity of
bis-benzo[d][1,3]dioxol-5-yl thiourea derivatives with molecular docking study. Bioorganic Chemistry 90: 103088.
Altaf, A.A., Shahzad, A.,
Gul, Z., Khan, S.A., Badshah, A., Tahir, M.N., Zafar, Z.I. & Khan, E. 2015.
Synthesis, crystal structure, and DFT calculations of 1,3-diisobutyl thiourea. Journal
of Chemistry 2015: 913435.
Antony Muthu Prabhu, A.,
Siva, S., Sankaranarayanan, R.K. & Rajendiran, N. 2010. Intramolecular
proton transfer effects on 2,6-diaminopyridine. Journal of Fluorescence 20: 43-54.
Arshad, N., Shakeel, M.,
Javed, A., Perveen, F., Saeed, A., Ahmed, A., Ismail, H., Channar, P.A. &
Naseer, F. 2024. Exploration of newly synthesized amantadine-thiourea conjugates
for their DNA binding, anti-elastase, and anti-glioma potentials. International
Journal of Biological Macromolecules 263(Part 1): 130231.
Arshad, N., Rafiq, M., Ujan,
R., Saeed, A., Farooqi, S.I., Perveen, F., Channar, P.A., Ashraf, S., Abbas,
Q., Ahmed, A., Hokelek, T., Kaur, M. & Jasinski, J.P. 2020. Synthesis,
X-ray crystal structure elucidation and Hirshfeld surface analysis of
N-((4-(1H-benzo[d] imidazole-2-yl)phenyl)carbamothioyl)benzamide:
Investigations for elastase inhibition, antioxidant and DNA binding potentials
for biological applications. RSC Advances 10: 20837-20851.
Baby, R., Saifullah, B. &
Hussein, M.Z. 2019. Palm kernel shell as an effective adsorbent for the
treatment of heavy metal contaminated water. Scientific Reports 9:
18955.
Bai, X., Li, Y. & Ye, Z.
2016. A colorimetric sensor based on thiourea–polyvinyl alcohol microspheres
for the selective recognition of Hg2+ and Cu2+. New
Journal of Chemistry 40(10): 8815-8822.
Bruckmann, A., Krebs, A.
& Bolm, C. 2008. Organocatalytic reactions: Effects of ball milling,
microwave and ultrasound irradiation. Green Chemistry 10(11): 1131-1141.
Caprio, V. 2008. Pyridines
and their benzo derivatives: Reactivity of substituents. Comprehensive
Heterocyclic Chemistry III 5: 101-169.
Chacko Yohannan Panickera,
H.T.V., Varkey, T., Georged, A. & Kandathil, P. 2010. FT‐IR,
FT‐Raman and ab‐initio studies of 1,3‐diphenyl
thiourea. European Journal of Chemistry 1(3): 173-178.
Charisiadis, P., Kontogianni,
V.G., Tsiafoulis, C.G., Tzakos, A.G., Siskos, M. & Gerothanassis, I.P.
2014. 1H-NMR as a structural and analytical tool of intra- and intermolecular
hydrogen bonds of phenol-containing natural products and model compounds. Molecules 19: 13643-13682.
Delgado, G.E., Fonseca, J.L.,
Mora, A.J., Bruno-Colmenárez, J., Chacón, C., Marroquin, G., Cisterna, J. &
Brito, I. 2024. Crystal structure, hydrogen bond patterns, Hirshfeld surface
analysis, and topological studies (NCI) of 1, 5, 5-trimethyl-imidazolidine-2,
4-dione; an organic compound with high symmetry crystallizing in the tetragonal
space group I4/m. Journal of Molecular Structure 1299:
137205.
Dhanishta, P., Siva, P.S.,
Mishra, S.K. & Suryaprakash, N. 2018. Intramolecular hydrogen bond directed
stable conformations of benzoyl phenyl oxalamides: Unambiguous evidence from
extensive NMR studies and DFT-based computations. RSC Advances 8(20):
11230-11240.
Dudley, G.B. & Stiegman,
A.E. 2015. On the existence of and mechanism for microwave-specific reaction
rate enhancement. Chemical Science 6: 2144-2152.
Effendhy, N.D., Roto, R.
& Siswanta, D. 2024. Advancing fluoride (F–) detection: Exploring the
potential of digital color analysis with a novel thiourea receptor. Microchemical
Journal 197: 109819.
Fakhar, I., Yamin, B.M. &
Hasbullah, S.A. 2017. A comparative study of the metal binding behavior of
alanine based bis‑thiourea isomers. Chemistry Central Journal 11:
76.
Fakhar, I., Yamin, B.M. &
Hasbullah, S.A. 2016. Synthesis and characterization of bis-thiourea having
amino acid derivatives. AIP Conference Proceedings 1784: 030012.
Gemili, M., Nural, Y.,
Keleş, E., Aydıner, B., Seferoğlu, N., Sahin, E., Sarı, H.
& Seferoğlu, Z. 2018. Novel 1,4-naphthoquinone N-aroylthioureas:
Syntheses, crystal structure, anion recognition properties, DFT studies and determination
of acid dissociation constants. Journal of Molecular Liquids 269:
920-932.
Han, W.S., Lee, H.Y., Jung,
S.H. & Lee, S.J. 2009. Silica-based chromogenic and fluorogenic hybrid
chemosensor materials. Chemical Society Reviews 38(7): 1904-1915.
Hosseinjani-Pirdehi, H.,
Mahmoodi, N.O., Pasandideh, M. & Taheri, A. 2020. Novel synthesized
azo-benzylidene-thiourea as dual naked-eye chemosensor for selective detection
of Hg2+ and CN¯ ions. Journal of Photochemistry &
Photobiology A: Chemistry 391: 112365.
Imran Fakhar, Bohari Muhammad
Yamin, Sahilah Abdul Mutalib & Siti Aishah Hasbullah. 2018. Synthesis and
binding behaviour of new isomers of bis-thiourea. Sains Malaysiana 47(6): 1199-1208.
Jambi, S.M., Chen, J., Zhang,
W., Fu, S., Zhou, Y., Domena, J.B. & Leblanc, R.M. 2023. Synthesis and
characterization of carbon dots derived from compounds containing thioureas and
thiazole rings. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 669: 131522.
Jin, G., Hong, I., Joo, E.,
Kim, H. & Kim, C. 2014. A colorimetric and fluorescent sensor for
sequential detection of copper ion and cyanide. Tetrahedron 70(17):
2822-2828. http://dx.doi.org/10.1016/j.tet.2014.02.055
Jorgetto, A.D.O., Pereira,
S.P., Innocenti, R., Saeki, M.J., Antonio, M., Martines, U., Pedrosa, V.D.A.
& Castro, G.R. 2015. Application of mesoporous SBA-15 silica functionalized
with 4-amino-2-mercaptopyrimidine for the adsorption of Cu(II), Zn(II), Cd(II),
Ni(II), and Pb(II) from water. Acta Chimica Slovenica 62(1): 111-121.
Kamalulazmy, N., Mutalib,
S.A., Nasir, F.I. & Hassan, N.I. 2016. Characterization and antimicrobial
studies of five substituted bis-thioureas. Malaysian Journal of Analytical
Sciences 20(1): 85-90.
Klygach, D.S., Vakhitov,
M.G., Suvorov, P.V., Zherebtsov, D.A. & Trukhanov, S.V. 2019. Magnetic and
microwave properties of carbonyl iron in the high frequency range. Journal
of Magnetism and Magnetic Materials 490: 165493.
Kole, G.K. & Kumar, M.
2018. Patterns of hydrogen bonding involving thiourea in the series of thioureatrans-1,2-bispyridyl
ethylene cocrystals–A comparative study. Journal of Molecular Structure 1163: 18-21.
Lin, Q., Chen, P., Liu, J.,
Fu, Y., Zhang, Y. & Wei, T. 2013. Colorimetric chemosensor and test kit for
detection copper (II) cations in aqueous solution with specific selectivity and
high sensitivity. Dyes and Pigments 98(1): 100-105.
http://dx.doi.org/10.1016/j.dyepig.2013.01.024
Liu, Y., Yang, L., Li, L.,
Liang, X., Li, S. & Fu, Y. 2020. A dual thiourea-appended perylenebisimide
“turn-on” fluorescent chemosensor with high selectivity and sensitivity for Hg2+ in living cells. Spectrochimica Acta Part A: Molecular and Biomolecular
Spectroscopy 241: 118678.
Lu, A., Wang, Z., Zhou, Z.,
Chen, J. & Wang, Q. 2015. Application of “hydrogen bonding interaction” in
new drug development : Design, synthesis, antiviral activity and SARs of
thiourea derivatives. Journal of Agricultural and Food Chemistry 63(5):
1378-1384.
Luo, J., Hunyar, C., Feher,
L., Link, G., Thumm, M. & Pozzo, P. 2004. Theory and experiments of
electromagnetic loss mechanism for microwave heating of powdered metals. Applied
Physics Letters 84(25): 5076-5078.
Maddani, M.R. & Prabhu,
K.R. 2010. A concise synthesis of substituted thiourea derivatives in aqueous
medium. The Journal of Organic Chemistry 75(7): 2327-2332.
Maity, D. & Govindaraju,
T. 2011. Highly selective visible and near-IR sensing of Cu2+ based
on thiourea–Salicylaldehyde coordination in aqueous media. Chemistry - A
European Journal 17(5): 1410-1414.
Mohd, W., Wan, K., Zin, M.,
Kadir, M.A. & Yamin, B.M. 2011. Structural and spectroscopic studies of
novel methylbenzoyl thiourea derivatives. Malaysian Journal of Analytical
Sciences 15(1): 70-80.
Ngah, F.A.A., Zakariah, E.I.,
Hassan, N.I., Yamin, B., Sapari, S. & Hasbullah, S.A. 2017. Synthesis of
thiourea derivatives and binding behavior towards the mercury ion. Malaysian
Journal of Analytical Sciences 21(6): 1226-1234.
Nurul Hidayah Abdul Razak, Ling
Ling Tan, Siti Aishah Hasbullah & Lee Yook Heng. 2020. Reflectance
chemosensor based on bis-thiourea derivative as ionophore for copper(II) ion
detection. Microchemical Journal 153: 104460.
Perrone, D., Monteiro, M.
& Castelo-Branco, V.N. 2015. The chemistry of imidazole dipeptides. In Imidazole
Dipeptides: Chemistry, Analysis, Function and Effects, edited by Preedy,
V.R. Cambridge: Royal Society of Chemistry. pp. 43-60.
Pingaew, R., Sinthupoom, N.,
Mandi, P., Prachayasittikul, V., Cherdtrakulkiat, R., Prachayasittikul, S.,
Ruchirawat, S. & Prachayasittikul, V. 2017. Synthesis, biological
evaluation and in silico study of bis-thiourea derivatives as
anticancer, antimalarial and antimicrobial agents. Medicinal Chemistry
Research 26(12): 3136-3148.
Reisman, S.E., Doyle, A.G.
& Jacobsen, E.N. 2008. Enantioselective thiourea-catalyzed additions to
oxocarbenium ions. Journal of the American Chemical Society 130(23):
7198-7199.
Robinson, J., Kingman, S.,
Irvine, D., Licence, P., Smith, A., Dimitrakis, G. & Kappe, C.O. 2010.
Understanding microwave heating effects in single mode type cavities-theory and
experiment. Physical Chemistry Chemical Physics 12: 4750-4758.
Saad, F.A. 2014. Synthesis,
spectral, electrochemical and X-ray single crystal studies on Ni(II) and Co(II)
complexes derived from 1-benzoyl-3-(4-methylpyridin-2-yl) thiourea. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 128: 386-392.
Sapari, S., Emma Izzati
Zakariah, Razak, N.H.A., Ramzan, I., Numin, M.S., Lee Yook Heng &
Hasbullah, S.A. 2021. A comparative study of microwave-assisted and
conventional heating methods of the synthesis of 1-(naphthalene-1-yl)-3-(o, m,
p-tolyl)thioureas, dft analysis, antibacterial evaluation and drug-likeness
assessment. Sains Malaysiana 50(3): 743-751.
Schroeder, D.C. 1955.
Thioureas. Chemical Reviews 55(1): 181-228.
Tang, J., Radosz, M. &
Shen, Y. 2008. Poly (ionic liquid) s as optically transparent microwave-absorbing
materials. Macromolecules 41: 493-496.
Teixeira, A.M.R., Santos,
H.S., Albuquerque, M.R.J.R., Bandeira, P.N., Rodrigues, A.S., Silva, C.B.,
Gusmão, G.O.M., Freire, P.T.C. & Bento, R.R.F. 2012. Vibrational
spectroscopy of xanthoxyline crystals and DFT calculations. Brazilian
Journal of Physics 42(3-4): 180-185.
Tungsombatvisit, N.,
Inprasit, T., Rohmawati, D. & Pisitsak, P. 2019. Rhodamine derivative-
based cellulose acetate electrospun colorimetric sensor for Cu2+ sensing in water: Effects of alkaline treatment. Fibers and Polymers 20(3): 481-489.
Warren, W.H. 1928.
Contemporary reception of Wohler’s discovery of the synthesis of urea. Journal
of Chemical Education 5(12): 1539.
Wazzan, N.A. 2015. DFT
calculations of thiosemicarbazide, arylisothiocynates, and
1-aryl-2,5-dithiohydrazodicarbonamides as corrosion inhibitors of copper in an
aqueous chloride solution. Journal of Industrial and Engineering Chemistry 26: 291-308.
Wiberg, K.B., Wang, Y., Box,
P.O. & Haven, N. 2011. A comparison of some properties of C=O and C=S
bonds. Arkivoc 2011(5): 45-56.
Yang, Y., Weaver, M.N. &
Merz Jr., K.M. 2009. Assessment of the “6-31+G** + LANL2DZ” Mixed basis set
coupled with density functional theory methods and the effective core
potential : Prediction of heats of formation and ionization potentials
for first-row-transition-metal complexes. Journal of Physical Chemistry A 113(36): 9843-9851.
*Corresponding author;
email: aishah80@ukm.edu.my
|